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INTRODUCTION 
 
For close to 70 years, the Natural Resources Conservation Service (NRCS) has provided seasonal water supply 

outlooks for use by Western US water managers. These outlooks are a critical component in effective water 
management and are utilized by a broad spectrum of users for a variety of purposes, ranging from irrigated 
agriculture, flood control, municipal water supply, endangered species protection, power generation and recreation. 

 
The Water and Climate Services division of the NRCS National Water and Climate Center produces seasonal 

water supply outlooks monthly, January through June, in partnership with the National Weather Service (NWS) and 
local cooperating agencies, such as the Salt River Project in central Arizona. During the 2004 forecast season, four 
NRCS hydrologists issued over 10,000 seasonal water supply outlooks for over 630 locations. Near the start of the 
month, each forecaster typically has less than three working days to create, analyze, adjust, coordinate, and issue 
forecasts for over 160 points simultaneously. The geographic and climatic scope of the forecasts range from minor 
creeks of the semi-arid Southwest US to glaciated basins of the Arctic Circle. Any new forecasting techniques 
would need to address many of the unique demands of this time-critical, yet human and computer resource limited 
operational environment. 

 
Improving these forecasts is one method of improving the sustainability of water supplies in the Western US. 

Increasing competition over limited resources also demands more informative forecast guidance, directly related to 
the user’s situation. For example, while it may help a user to have an estimate of the anticipated April-July runoff 
volume at a specific location, his or her water right may be tied to the date that flow falls below 225 cubic feet per 
second. Such user interests are so varied and specific that it is not possible for a forecaster to maintain an armada of 
statistical regression equations to address (and anticipate) every user need. Instead, the forecaster could present an 
ensemble of plausible hydrographs from which a specific forecast would be derived by the user. A hydrologic 
simulation model can provide such a forecast if properly calibrated and provided with the appropriate data. Also, a 
simulation model, with its representation of basin physics, can explicitly capture basin behavior during extreme 
years, e.g. unprecedented snowpack, multi-year soil moisture deficits. In contrast, the current statistical forecast 
methodology is relatively limited and does not quantify the effects of highly unusual or even unprecedented 
conditions.  

 
This paper describes the current status and anticipated near-term future directions of the NRCS National Water 

and Climate Center with respect to the use of simulation models. It begins with a description of the water supply 
forecasting operations, and continues with a review of past attempts to adopt operational simulation models. Next, 
the modeling environment is described, with emphasis on one model, the Precipitation Runoff Modeling System 
(PRMS) and its environment, the Modular Modeling System (MMS). Case studies of two basins are provided. For 
the sake of brevity, many of the NRCS’s other simulation modeling activities are not included. Nonetheless, in the 
final sections, general aspects of simulation modeling in an operational environment are discussed, ranging from 
model calibration to the role of multiple models. The final section is relevant to any operational modeling 
enterprise, regardless of the specific model or methodology chosen.  

 
HISTORY 

 
Along with producing forecasts, the NRCS is also responsible for operating a high elevation hydroclimatic 

monitoring network. Until the early 1980’s, these measurements were manually collected by snow surveyors 
traveling to a site on a monthly basis to use a federal snow sampler (a specially calibrated hollow aluminum tube) to 
measure snow water equivalent and snow depth. Increasing demands for more timely and frequent snowpack 
information resulted in a significant push to automate and telemeter measurements from nearby snow courses using 
meteor-burst communications.  Thus the SNOTEL (SNOw TELemetry) network was funded and deployment began 
in the middle 1970s. Some of the original justification for the SNOTEL network was a demand for daily real-time 
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measurements for use in simulation models. Therefore the NRCS has long had an interest in adopting a simulation 
model for operational forecasting, and this interest has been intricately tied to the data monitoring network. 

  
Leavesley and Saindon (1985) and Marron (1986) investigated the use of PRMS in an NRCS operational 

setting, primarily focusing on basins in Nevada. These authors also tried to constrain model parameters so that 
model simulated snowpack during calibration matched SNOTEL snow water equivalent measurements. NRCS 
hydrologists Jones (1986) and Perkins (1988) operated the US Army Corps of Engineers Streamflow Synthesis and 
Reservoir Regulation (SSARR) model on the Yellowstone and Upper Rio Grande, following the NWS’s SSARR-
based simulation of the Clearwater River in Idaho (Kuehl, 1979). Perkins was a former Army Corps employee and 
helped write part of the original SSARR computer code. These authors, likewise, compared simulated snowpack to 
SNOTEL measurements. Cooley (1986) of the USDA-Agricultural Research Service tested the NWS River 
Forecast System (NWSRFS) model on Lower Willow Creek in Montana, in cooperation with NRCS personnel. 
Shafer, et al (1981) also forced the Snowmelt Runoff Model (SRM) with satellite data to produce forecasts, which 
was followed by more involvement in the satellite version of SRM around 1987.  

 
All these activities built up to an internal NRCS document in 1992 comparing the results of different models 

and outlining a strategy for moving from forecasting prototypes to an operational system. This document identified 
the SSARR model as the most attractive option and committed to calibrating 200 basins in 5 years with 3 staff 
hydrologists. Running on a Unix 33-Mhz 386 mainframe with DOS 286 workstations, the entire enterprise was 
expected to cost $1.217 million. Soon after this document was released, the NRCS suffered an unexpected and 
significant realignment of resources, parts of the agency were reorganized and the simulation modeling enterprise 
lost much of its momentum. A position at the NWCC was moved out of water supply forecasting and was devoted 
to simulation modeling after the 1992 report; recognizing that the agency would not have the resources to attempt 
operational simulation modeling after the agency reorganization, efforts of this hydrologist were turned towards 
more research-oriented spatially distributed snow simulation models (e.g. Garen and Marks 1996, 2001). These 
snow models would eventually be a component in a next-generation spatial hydrology model likewise being 
developed by the research community.   

 
A program-wide meeting of the snow survey and water supply forecasting organization was convened in 2002 

in Las Vegas. At this meeting, a committee was formed investigate the feasibility of running simulation models in 
the current operational environment. With relatively fewer budget constraints, and with improved automation and 
data availability, the window of opportunity appeared open to at least explore the available possibilities. In addition, 
with the unprecedented sequence of wet and dry years at the end of the 20th century, the call rose from users to 
provide more and better information about extreme events and forecasts of within-season hydrograph behavior. 
This committee formulated a plan to investigate the use of a modified version of the SRM model, as well as PRMS, 
the University of Washington Variable Infiltration Capacity (VIC, Wood, et al 2001), and NWSRFS models. The 
implications of maintaining the status quo and/or serving as a conduit for another agency’s forecasts were also 
identified.  

 
MODEL SELECTION 

 
A simulation model is a mathematical representation of processes that influence primarily the energy and water 

balances of a watershed. These models have a broad range of relevant scales, from continent to catchment, and have 
varying complexity, from highly lumped generalized conceptualizations to models with explicit representations of 
basin physics. No model is adequate for all circumstances and the selection of a model (or models) involves 
balancing accuracy, practicality, data demands, and the ability to calibrate the model to the specific watershed.  

 
As described by Leavesley, et al (1983), PRMS is a modular-design, deterministic, distributed-parameter 

modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use 
on streamflow, sediment yields, and general basin hydrology.  Basin response to normal and extreme rainfall and 
snowmelt can be simulated to evaluate changes in water-balance relationships, flow regimes, flood peaks and 
volumes, soil-water relationships, sediment yields, and ground-water recharge. Parameter-optimization and 
sensitivity analysis capabilities are provided to fit selected model parameters and evaluate their individual and joint 
effects on model output. The modular design provides a flexible framework for continued model-system 
enhancement and hydrologic-modeling research and development. 

 



PRMS resides within the larger MMS framework which allows the user to construct a model from individual 
modules, such that a model could be designed to match the situation at hand. For example, if basin hydrograph 
behavior is heavily influenced by groundwater, the standard PRMS subsurface water module could be replaced by a 
module with a more appropriate level of detail. The MMS infrastructure allows the design of individual models but 
it also facilitates the use of many different models on an individual basin because the input and output data formats 
are universal.  

 
DATA COLLECTION AND QUALITY CONTROL 

 
Accurate and representative meteorological data are key to the successful operation of simulation models. This 

data plays a role during model calibration as well as real-time operations. The data demands of a forecasting agency 
are somewhat different than those of a group setting up a model for research purposes; Forecast models must be 
able to be run on demand, capturing recent events less than hours after they occur. Likewise, real-time data are 
often of the most dubious quality, especially from automated measurement systems which can randomly produce 
extreme (but unlikely) values or possess gradual drift. Without automated data acquisition technology and 
automated, forecaster-aided intelligent data quality control, it’s unlikely that the human resources of the NRCS 
would be able to satisfy the data demands of a single basin, much less the hundreds of basins planned.  

 
The primary driving variables for most simulation models are daily temperatures and precipitation amounts, 

although some models also ingest or assimilate snow water equivalent, snow covered area and other exotic 
variables such as surface radiation. The NRCS SNOTEL sites primarily measure current snow water equivalent, 
accumulated precipitation and temperature. Many sites have recently installed soil moisture, soil temperature and 
snow depth sensors. A very limited number of sites measure wind speed and direction, solar radiation, relative 
humidity, and/or fire fuel moisture.  

 
The NWS also maintains a variety of networks consisting of low elevation sites, some with automated 

measurements, others with manual measurements taken by cooperative observers (COOP). Precipitation and 
temperature are routinely measured although accurate snowfall and snow depth measurements are less common. 
Daily SNOTEL measurements generally begin in the early 1980s although many of the COOP data sites have 
existed since the early 1900s, with widespread data available since 1948. 

  
A recent significant advance in the availability of real-time and historical climate data is the advent of the 

Applied Climate Information System (ACIS, BAMS 2004). This distributed and synchronized information network 
is maintained and operated by the Regional Climate Centers and the National Climate Data Center. It serves data 
from NOAA networks including the COOP network, the Hourly Surface Airways Network and the Historical 
Climatology Network. ACIS can be accessed through high-level web-based interfaces or directly through a Python 
language based XML-RPC standard. The Python interface allows, among other things, for the user to submit a list 
of sites, desired dates and variables at a command prompt and be returned a machine readable file containing the 
data. Through a series of Cygwin (a UNIX emulator for Windows) shell scripts, precipitation and temperature data 
through yesterday are currently being retrieved from the ACIS system and the NWCC ftp server, and are being 
combined with streamflow data automatically downloaded from the USGS webpage to create model-ready files for 
forecast execution.  

 
In addition to the real-time data, it is important to create and maintain an extremely high quality historical 

dataset, subjected to the most rigorous screening and data quality testing possible. The NRCS focuses most of its 
resources in maintaining the quality of its snow water equivalent and precipitation data. Temperature data however 
are largely “raw” (a recent inventory showed between 99.7% and 99.9% of historical SNOTEL temperature 
measurements were never altered from the original sensor value). The data possesses many outliers that must be 
removed and replaced with suitable alternative values for any simulation model to have any chance of accurately 
reproducing basin hydrologic conditions.  

 
As mentioned in Clark and Slater (2005), Martyn Clark has developed a quality control software package 

drawing on the best aspects of at least four other major quality control approaches including “point-based and 
spatial checks for a) extreme values; b) internal consistency among variables (e.g. maximum temperature less than 
minimum temperature); c) constant temperature (e.g., 5 or more days with the same temperature are suspect); d) 
excessive diurnal temperature range; e) invalid relations between precipitation, snowfall, and snow depth; and f) 
unusual step changes or spikes in temperature time series.” This procedure was used to identify suspicious values 



throughout the historical period of record of the SNOTEL and ACIS datasets, replacing with suitable alternatives 
where appropriate. This software has been transferred to the NRCS for the package to be used to screen real-time 
data. The NRCS is also investigating the use of the PRISM screening technology (Daly et al 2004). 

 
MODEL CALIBRATION 

 
Simulation models contain equations that describe the physical interaction of different components of the water 

and energy balance. Model parameters relate these abstract physical laws (or scale-dependant approximations of 
these laws) to the specific basin at hand. Many parameters are observable (e.g. basin area, slope, elevation, 
vegetation type) although some parameters are unobservable conceptualizations of basin characteristics (e.g. the 
nonlinearity of hydrologic response to near surface soil moisture saturation). While the ultimate goal of a model 
based completely on observable parameters may not be realized for several years, another key to simulation 
modeling success is the accurate calibration of parameters. Of particular concern to NRCS operations is the labor 
intensiveness of manual calibration (the human expert guided stepwise adjustment of model parameters followed by 
visual inspection of model hydrograph behavior compared to the observed). Instead, the agency is seeking to 
measure as many parameters as possible, use automatic calibration techniques to estimate remaining parameters, 
and use manual calibration only when necessary as a last resort.  

 
The spatial parameters of the PRMS model are derived using the “GIS Weasel” an ARC-based map and user 

interface driven tool to delineate, characterize and parameterize the hydrologic response units of the model (Viger 
et al 1998). This program ingests elevation, soils and vegetation data, queries the user about his or her assumptions 
in defining a hydrologically homogeneous unit and automatically processes the spatial data to generate initial 
parameter estimates. A modified version of the Weasel is being tested which uses a fixed strategy for sub-basin 
delineation and involves little to no human interaction with the program. Such easy, automated and fast batch 
estimation of model parameters is an attractive option to agencies with limited personnel.  

 
At this stage, many non-spatial parameters remain to be calibrated. Classically, these steps of model calibration 

would involve the manual adjustment of model parameters to improve the visual correspondence of the model and 
observed hydrographs. The danger in such calibration, especially by novice modelers, is the pit of equifinality (the 
notion that many different parameter combinations would provide an equally acceptable fit to the hydrograph). 
While model output between two parameter sets during calibration may be nearly identical, the internal simulation 
of model states (e.g. the amount of snow on a watershed, the depth of water contained in soils) may be radically 
different. Parameter sets that “got the right answer for the wrong reason” are likely to perform poorly outside of the 
calibration period. Therefore it is critical to verify the intermediate states of the model during calibration.  

 
Hay (2005) has developed an iterative multi-step automatic calibration scheme which was used to derive several 

initial parameter sets for operations during 2005. This procedure identifies specific parameters that influence the 
simulation of model states; exogenous datasets are then used to constrain model internal behavior. For example, 
model parameters related to solar radiation are identified in advance using sensitivity analysis. All other parameters 
are held constant and the UA-Shuffled Complex Evolution algorithm (Duan et al 1994) is used to identify the 
parameter combinations that give the best fit between the model’s simulated solar radiation monthly climatology 
and observed solar radiation climatology. When an optimal parameter combination is found, the next step of the 
calibration related to potential evapotranspiration begins, relating the model monthly climatology to the observed. 
The 3rd and 4th rounds of calibration involve the verification of the annual water balance and the partial duration 
time series of peak flows above a specified threshold of low flows. The final parameter set is then returned to the 
first step and the calibration of solar radiation parameters is repeated. In all, the program cycles through all 4 steps 
6-8 times until the program converges on an optimal parameter set that satisfies all objectives. This process remains 
under development and the addition of other exogenous datasets (e.g. snow covered area, snow water equivalent) is 
being investigated.  

  
MODEL OPERATION 

 
In the late summer of 2004, 13 basins were identified as suitable initial candidates for an attempt to calibrate, 

run, and analyze PRMS models (table 1). After exceptional fall rainfall, and record breaking streamflows following 
several years of extreme drought, personnel recognized a unique climatological opportunity to test the models and 
added 3 basins in southern and northern Utah. In the first season, 16 basins were calibrated with multiple parameter 
sets – the first set used all available input data, a second used only a subset of those meteorological sites whose data 



are available in real-time (e.g. some NWS cooperative observers report a month’s worth of data only once a month, 
an unacceptable timeline for real-time operations). The first dataset is likely to give the best calibration results, but 
may perform poorly during forecasting if many sites are missing data. The second calibration set should provide a 
more robust estimate of real-time performance even if the calibration is less than optimal. A third and fourth 
possible parameter sets are anticipated using a historical dataset with serially complete backfilled meteorological 
data values.  

 
The spatial model calibration was completed by NWCC personnel on regular desktop computers described 

below. From downloading elevation data to finishing spatial calibration takes approximately 30-45 minutes per site, 
depending on the size and complexity of the basin. The automatic multi-objective calibration was done using the 
USGS Denver office’s Beowulf computer cluster, taking approximately one day of computing time per basin. By 
October 2005, a java-based visual user interface to the internal-state calibration software should be ready for testing 
on computers in the NWCC office.    

 
In real-time forecast operations, models are initialized by running the model over the period of record of the 

input dataset (1948-2005) and saving the model states (e.g. snow covered area, snow water equivalent, soil 
moisture) on the last day of the run (yesterday). Forecasts are then created by forcing the model with the 
meteorological sequence of each historical year in turn, given the same initial model state. The result is an ensemble 
of equally likely possible futures, given current basin conditions. This ensemble streamflow prediction (ESP, Day 
1985) technique has become a standard practice among most operational forecast agencies. Although all historical 
years are run, a subjective visual analysis of input and output calibration time series was done in advance to specify 
a start year for acceptable traces; in many basins, the change in calibration performance was obvious when the mix 
of available stations changed. At the most extreme, some basins have no input data early in the period of record 
before any COOP or SNOTEL sites existed in the region. Inclusion of these sequences in the analysis would be 
clearly inappropriate.  

 
As of May 2005, identical data collection and modeling systems were operating successfully on several 

computers at the NWCC as well as on a computer at the Utah NRCS snow survey data collection office and a 
personal home computer outside the NRCS network. All 16 basins can be run on demand for multiple parameter 
sets. On a standard 2.8 GHz desktop computer with 1GB of memory with a transfer rate of 1 Mbps, the data 
requirements for 16 basins across the western US can be satisfied in less than 8 minutes. Improvements in database 
technology are likely to reduce this time, as will be necessary when more basins are adopted. Model initialization 
and ESP simulations for all basins, for 2 parameter sets per basin are, likewise, completed in 8 minutes. Currently 
the data collection and model operation routines are running on a scheduler four times a day (to collect late-
reporting sites).  

 
An Excel spreadsheet has been temporarily designed to ingest model output files, link to real-time streamflow 

data, visualize hydrograph behavior and calculate summary statistics. The user can visualize one of 18 model states 
(e.g. streamflow, snow covered area, temperature, soil moisture), overlaying the real-time forecast distribution (or a 
subset of individual years) on top of the model simulated history and/or the observed data where available. The user 
can also calculate the historical and forecast peak amount, peak date, first date of crossing below or above a relative 
or absolute threshold, the volume above a threshold and so on for any of the model states. Many additional 
advanced Java-based spatio-temporal visualization tools are likely to become available by September 2005 with the 
transfer to the Object Modeling System (OMS), the next incarnation of MMS.   

  
CASE STUDY 1: SANTA CLARA NEAR PINE VALLEY, UTAH 

 
The streamgage on the Santa Clara River near Pine Valley drains a small, relatively high elevation unregulated 

watershed dominated by snowmelt. The region recently experienced an unprecedented exceptional drought. As 
recently as February 2004, the basin was designated as D4, the most extreme drought classification available on the 
US Drought Monitor, reserved only for events with return intervals more than 50 years. 2002 saw the lowest 
streamflows on record, and flow from 1999-2004 was 47% of the long-term 1971-2000 normal.  

 
Beginning October 17th 2004, however, Utah was struck with a slow moving high intensity storm (Bardsley and 

Julander, 2005). The Virgin and Santa Clara river basins experienced between 4.7 and 10.9 inches of precipitation 
during October 17-23. It is estimated that Gutz Peak experienced a 24-hour precipitation amount in excess of the 
1000 year return interval. On October 21, SNOTEL soil moisture sensors rose to levels usually only reserved for 



full snowmelt season and persisted there for the next several months. The PRMS model soil moisture states 
reflected that the current year had gone well outside the range of historical variability (figure 1). The complexity of 
the situation increased when in early January unprecedented snowfalls hit the region. During December 28 to 
January 13 2005, sites received as much as 20 inches of new snow water equivalent on top of already record high 
snowpack. The snowpack was so extreme that nearby Midway Valley (12m23s) broke all-year all-time snowpack 
records by mid February, two and a half months earlier than the previous record set in 1983, eventually peaking out 
in mid April, 140% of the previous record, close to 270% of average.  

 
PRMS did a fair simulation of the timing and character of streamflows (figure 2). The model captured the 

unprecedented winter baseflow conditions and reproduced the overall shape of the hydrograph rise in May and 
June. It is difficult to know the accuracy of the real-time streamflow data during very high flows although it does 
seem like the model had a tendency to undersimulate flows, both during the October event and during May-June. 
Near May 1, the model predicted a 50% chance of having a seasonal peak greater than 125 cfs, whereas the NWS 
official forecast indicated a 50% chance of more than 450 cfs. The spring precipitation sequence was not unusual 
and the eventual peak for the season was 184 cfs observed on May 24. The NRCS has no interest in or authority to 
issue statements related to flooding and at this time there is no information about whether a slight underforecast 
would have had a more damaging effect to the user than a larger overforecast.  

 
CASE STUDY 2: LITTLE WOOD RIVER NEAR CAREY, ID 

 
The stream gage on the Little Wood River above High Five Creek near Carey, Idaho is at elevation 5320 feet 

(msl) and drains an area of 248 square miles. The mean elevation of the basin is 7,220 feet. Diversions above the 
gage are used to irrigate 1,300 acres, which is less than one percent of the basin. The forecast for this location is 
used to manage the Little Wood Reservoir, which serves downstream irrigators, but is also important for recreation, 
fish and wildlife, and a small amount of hydroelectric power generation. 

 
Prior to the 2005 water year, the Little Wood watershed was in the midst of a multi-year dry period that started 

in 2000. Despite a wet summer and fall, the streamflows at the High Five gage were flowing below normal. A 
series of nine small storms starting on March 19th and ending on May 9th, served to build upon a meager snow pack 
and to prime the soil profile. Each of these storm events produced a half inch or less of precipitation. The period of 
May 15th through May 19th experienced copious amounts of precipitation over southern Idaho generally, and over 
the Little Wood basin specifically (>4” of precipitation). Streamflows in southern Idaho streams and rivers raised 
dramatically in response to these heavy precipitation events. 

 
The PRMS model simulation matched the timing and magnitude of streamflows (figure 3). The model tracked 

the two rapid rises that occurred on May 17th and May 19th, the days of heaviest precipitation. The model produced 
1,590 cfs on May 17th and 1,970 cfs on May 19th, versus 1,593 cfs and 1,972 cfs, respectively. It should be pointed 
out that the model is calibrated on daily average flows. The recorded instantaneous flows were 2,130 cfs on May 
17th and 2,220 cfs on May 19th, highlighting how a daily model would clearly not be sufficient if one were 
attempting to, for example, protect against flood damage.  

 
While the simulation of this event was excellent, the spring precipitation event was of an extremely large 

magnitude and was unanticipated. It is likely that the observed streamflow would have been the edges of the 
conditional distribution of a forecast issued in February or March. Seasonal and medium range precipitation and 
temperature forecasts might have improved the accuracy of the streamflow forecast, but this situation is a clear 
example of the need to communicate the uncertainty and range of possibilities of outcomes, to not reduce the 
forecast to “one number” or a single hydrograph trace.  

 
OPERATIONAL CONCERNS AND STRATEGIES 

 
While the universe of products available from simulation models is much more inclusive than statistical-based 

forecasts, simulation models are much more complex and involving to set up and maintain. There are many 
opportunities for errors. Some errors are practically unavoidable, such as those due to extreme precipitation events 
after the forecast issue date. However, hydrologists should also try to minimize the effects of limitations in model 
structure, poor model calibration, and errors in input forcings. Additional opportunities exist in the post processing 
of forecasts and real-time adjustment of model states.  

 



Models 
 
It is essential to have a model or models that are complex enough to describe the hydrology of western US 

basins. This includes the accurate simulation of snowpack as well as soil moisture, and the spatial interpolation of 
forcing variables (e.g. temperature and precipitation) over complex terrain. MMS allows the ability to tailor the 
model structure to fit the situation at hand. In particular, it is critical for the agency to retain flexibility to adjust to 
evolving forecast needs and not be fixed into “one model”. For example, the NRCS envisions itself playing a larger 
role in simulation modeling of water quality for agricultural processes. The MMS infrastructure makes such growth 
possible while maintaining the same overall architecture of data handling. If the model does not have the correct 
structure for the basin hydrology, the forecaster will have to hope, at best, that time-consuming subjective real-time 
adjustment to model states and parameters can compensate for these limitations.  

  
Inevitably, all models are imperfect representations of reality, each is a different perspective on a system. 

Operational hydrology often focuses on the use of a single tool or a single model in developing forecast guidance. 
In many natural science and economic settings, research consistently reveals that a consensus forecast based on the 
output of many tools almost always outperforms the best individual tool within the ensemble (Armstrong 2001). 
The approach of creating forecasts based on an ensemble of tools (e.g. “Super-ensembles”) has gained acceptance 
in the operational meteorological and climatological communities, and the evolution of hydrologic practice along 
these lines would be logical and would benefit users.  Previously, the resources required to maintain many different 
modeling systems made such an enterprise prohibitively expensive, especially if the incremental improvement in 
the forecasts was small compared to the cost of maintaining many different systems. Operational meteorologists 
and climatologists rely heavily on automation and leverage partnerships with outside research groups (e.g. 
universities) running their own models; there is no reason the same approach could not be used by hydrologists.  

 
Parameters 
 
In relating a generalized model to a specific basin, it is necessary to estimate model parameters. As mentioned 

earlier, so-called “observable” parameters are preferred to non-observable parameters because human expertise is 
often required to subjectively estimate non-observables. Much research has been done in objective automatic 
calibration of hydrologic models although this practice has not received widespread operational acceptance. A 
concern is that automatic calibration procedures “possess logic” but “lack sense”, in that they can adjust parameter 
values to the extremes, in order to achieve the last bit of improvement in the calibration objective function. In 
comparison, the human forecaster can use subjective knowledge and experience to constrain certain parameter 
values while preventing over-fitting.   

  
In one sense, the optimal strategy for a resource limited agency like the NRCS would involve a hybrid of 

automatic and manual calibration techniques. The hydrologist would have to articulate multiple objectives he or she 
would like to satisfy in terms of hydrograph behavior. Next, an objective procedure mimicking manual calibration 
(e.g. Hogue et al 2000) would return to the hydrologist a series of plausible parameter sets. The expertise of the 
human would then be used to narrow down the range of parameter sets and/or make minor adjustments to parameter 
values. Of course nothing prevents the hydrologist from retaining all plausible parameter sets. The standard ESP 
procedure accounts for forecast uncertainty due to future climate variability but ignores uncertainty due to 
parameter estimation, model limitations and data uncertainty. Running many parameter sets and aggregating the 
results into a “super-ensemble” would be one way of accounting for parameter uncertainty, provided that one can 
ensure that the parameter sets are independent samples. 

 
Although it may be beyond the computational resources of the agency at the moment, some researchers (Moore 

and Doherty, 2005) have gone as far as suggesting that the model should be recalibrated any time a specific forecast 
is desired. Rather than retaining a single “calibrated model” for all situations (e.g. peak flows, low flows, seasonal 
volumes), the model is recalibrated on demand to fit the exact forecast situation (e.g. the first date after the peak 
that flow drops below 325 cfs). This philosophy borders on treating the model like a complicated non-linear 
statistical tool. This approach does not satisfy the expectation that the agency should be able to provide a suite of 
hydrograph traces that give an equally accurate forecast, no matter what aspect of the hydrograph is being analyzed. 
The agency may have to decide on the most important objective- a hydrograph based forecast of plausible daily 
time series, or a tool that gives the most accurate and well calibrated probabilistic answer to the specific question 
being asked. Ultimately, resources may be the limiting factor in determining the calibration strategy, both in the 
sense that the human resources are not available to do manual calibration and computer resources are not available 



to do the most sophisticated forms of automatic calibration. In addition, it is not enough for a calibration approach 
to “have the science right”; if it is not easy to install or operate, does not have an adequate user interface, or is not 
fully credible to the hydrologist, the likelihood of operational adoption is low.  

  
Data 
 
Without real-time access to high quality data, no forecast model can operate successfully. An ideal forecast 

system would also include a graphical interface to the data, backed by a powerful set of automated quality control 
routines. A forecaster’s energy should be spent inspecting extreme values and “locking in” the values if they are 
true. This includes routines that investigate the spatial-temporal consistency and plausibility of the values, identifies 
the probability that the value is an outlier, and suggests replacement values. Of particular concern is the mistaken 
rejection of a real extreme value. The forecaster must also be able to retain control over the past data in that if a 
forecaster changes a value, the original value does not overwrite the forecaster edit when refreshing data, unless the 
data value changes at the source, in which case the forecaster should be presented with a choice to accept or reject 
the new value. The forecaster should also have the flexibility to decide to use all raw data, all estimated data or 
some mix of original and edited values.  

  
This, of course, assumes that the “true” data value is knowable by the forecaster. Data quality control involves 

the estimation of uncertain information by looking at the internal consistency of the data and the historical 
relationships between variables or across sites. Even a manual “ground truthing” of an automated measurement has 
some instrumental and representativeness errors associated with it. In this sense, the parallels between forecasting 
the true state of anticipated streamflow and estimating the true value of the forcing inputs (e.g. snowpack, 
precipitation, temperature) are uncanny.  

  
From the turn of the century until the 1980s, water supply forecasts were almost exclusively deterministic in 

that the forecast was for a specific volume at a given location and time period (e.g. “500 thousand acre-feet for 
April-July on the Animas at Durango”). In time, the need to provide users with a probabilistic forecast was 
recognized, so that the users could determine their respective level of risk and determine the “one number” that is 
most relevant to their specific operations. Although the focus of forecasters and presentation of the water supply 
forecast information to users still remains primarily deterministic, there is virtually no operational discussion of 
data values as probabilistic entities. Such a change philosophy would require a wholesale paradigm shift that is 
unlikely to occur in the near future. Nonetheless, it is still the responsibility of operational agencies, within the 
limits of their resources, to adequately and accurately represent forecast uncertainty, including data uncertainty.  

  
Techniques exist to convert deterministic point data values into probabilistic data distributions, such as PRISM 

(Daly et al 2004). Clark and Slater (2005) also describe such a conversion and the linking of gridded precipitation 
conditional distribution functions with random number generators to create ensembles of adequately spatially 
correlated precipitation fields. These ensembles can then be used to force the hydrologic model(s) to derive an 
ensemble of possible model initial states (e.g. snowpack). This will create additional dispersion in the ensemble-of-
ensembles forecast, accounting for the data uncertainty. As before, the success of the NRCS in accounting for these 
factors relies how well the above concepts can be articulated in a user-friendly software package that does not 
exhaust available human and computational resources.  

 
Assimilation and Post-Processing 
 
The NRCS data collection and quality control effort is primarily focused on the accurate estimation of snow 

water equivalent data. Many models ingest precipitation and temperature data to simulate snowpack. The agency 
should take advantage of the information contained in the snowpack measurements to keep model states on track.  

 
The NWS has for many years assimilated snow data, beginning with the Snow Estimation and Updating System 

(SEUS, McManamon, et al 1995), continuing on with variants and modifications to the original design. The 
University of Washington forecast system (Wood et al 2001) projects the current observed snow data into a 
historical observed percentile which is then projected into a percentile of the model climatology. Bales et al (2005) 
recently assimilated satellite snow image data into the PRMS model with limited success. Objective data 
assimilation is routine and widespread in meteorology, and there is also a long history of subjective modifications 
to hydrologic model states by the NWS (in order to match real-time simulated flows with observed flows- a 
significant difference in these two diminishes the credibility of a short-term forecast).  



  
Before assimilation, the hydrologist should be inclined to ask two questions – why is the model simulation not 

tracking the observed and what are the ramifications of changing a model state? If the model’s simulations are poor 
due to poor model structure or poor calibration, the forecast issue date is not the time to be adjusting model states, 
as the credibility of the result is already beyond repair. In an ideal situation, data assimilation should only produce 
large adjustments rarely (e.g. when a small scale major precipitation event occurs between measurement sites); 
frequent large adjustments are an indicator that the modeling system itself is fundamentally flawed and should be 
redeveloped.  

 
Likewise, when a model state is changed (e.g. snowpack is “removed” from the model), what happens to the 

rest of the model? Did the snow never fall in the first place (in which case it should be “evaporated”)? Did the snow 
fall and melt unexpectedly (in which case it should go into the soils or have appeared as streamflow)? The 
implications for the forecast are not trivial; the priming of the soils in the second example is likely to produce a 
wetter forecast than the first example. Changes in a model state should cascade into other model states. In an 
obvious example, if a zero snow water equivalent value is assimilated, the snow covered area, also, should be 
adjusted to zero. Slater and Clark (2005) have tested a methodology for assimilation of snow data, using the 
historical interrelationships among model internal states to determine how, if at all, other non-snow model states 
need to change.  

 
If it is necessary for the recent hydrograph to match the near-term forecast, another possibility is to perform a 

statistical time series analysis of recent errors and apply a bias correction to the near-term forecast to make them 
align. The MIKE-SHE European hydrologic model allows the user to automatically deconstruct the recent errors 
into bias, magnitude and timing, generating a time varying correction function into the future. This correction may 
add to the plausibility of the forecasts by giving the user the (potentially false) impression that the model is 
simulating basin conditions accurately, but it is simply treating the “symptoms” of what could be a more serious 
underlying “disease”.   

 
If a model contains unavoidable systematic biases, it may be useful to apply statistical post processing to ensure 

the optimal translation of model output into forecast information. This may involve, for example, converting a 
model forecast volume for each hydrograph trace into a percentile ranking with respect to the model climatology 
during calibration. This percentile is then converted into a volume with respect to the observed historical 
streamflow value. Other options include the fitting of model simulated and observed streamflows to statistical 
distributions to estimate the adjustments necessary to the forecasts. No specific technique for such bias adjustment 
has emerged as a clear favorite; the NWS Colorado River Basin River Forecast Center system allows the operator 
to fit no fewer than 5 different distributions to the historical and real-time data and has multiple error models 
available to post process the data. With bias adjustment, however, one must operate from the assumption that even 
though the model got the historical simulation “wrong”, the relative change in the model forecast relative to the 
model climatology is a “right” forecast of real conditions. The relevance of historical model errors to the real-time 
forecast errors also diminishes if real-time adjustments are made to the model (e.g. snowpack assimilation, manual 
changes to model states) that weren’t made during the historical model runs.  

 
Finally, standard ESP assumes that all meteorological sequences are equally likely. However, it is possible to 

indicate that, for example, if an El Niño event is underway, that the anticipated meteorological sequence is more 
likely to resemble other El Niño years than the opposite, La Niña years. Werner et al (2004) has tested 6 climate-
based trace weighting schemes for use with the NWS model. Clark et al (2005) has also probabilistically integrated 
long-term meteorological (i.e. 10-15 day) forecasts into ESP. Climate change such as regional warming may make 
some scenarios less relevant than others. Ideally, the NRCS hydrologic forecast should be consistent with the 
variety of other climatological and meteorological forecasts that exist across a range of temporal scales. As earlier, 
the science of trace weighting seems robust and the ability to incorporate this information will ultimately depend on 
the resources available to the agency.  

 
SUMMARY AND CONCLUSIONS 

 
Continuing a long-standing interest in the use of simulation models for operational water supply forecasting, the 

NRCS has developed a preliminary prototype based on the PRMS/MMS system. As of 2005, 2 parameters sets each 
have been created for 16 basins across the Western US, without using any manual calibration. Data is retrieved 
daily from the SNOTEL and ACIS networks and is automatically processed for model ingestion. The time required 



to gather data, and run the model for all basins and all parameter sets is approximately 15 minutes on an ordinary 
desktop computer and can be done with no human intervention on a scheduler. Many scientific and technical 
challenges remain, including but not limited to issues related to data quality, database design, data assimilation, 
uncertainty estimation, pre- and post-processing and effective delivery and communication of results. The agency 
aims to build an infrastructure that is robust yet flexible enough to accommodate new developments within the 
research community.  
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Table 1 Forecast basins and their characteristics. Latitude and longitude are the location of the streamgage.  

Station ID Site Name Latitude 
(North) 

Longitude
(West) 

Drainage 
(Miles2) 

06024450 Big Hole River Bl Big Lake Cr at Wisdom, MT 45.62 113.46 575
06191500 Yellowstone River at Corwin Springs, MT 45.11 110.79 2,619
06694650 Antero Reservoir Inflow, CO 38.98 105.90 189
08378500 Pecos River near Pecos, NM 35.71 105.68 189
08379500 Pecos River near Anton Chico, NM 35.18 105.11 1,050
09112500 East River at Almont, CO 38.66 106.85 289
09239500 Yampa River at Steamboat Springs, CO 40.48 106.83 568
09251000 Yampa River near Maybell, CO 40.50 108.03 3,410
09299500 Whiterocks River near Whiterocks, UT 40.59 109.93 109
09361500 Animas River at Durango, CO 37.28 107.88 692
09406000 Virgin River at Virgin, UT 37.20 113.18 956
09408400 Santa Clara River near Pine Valley, UT 37.38 113.48 18.7
12358500 Middle Fork Flathead River near West Glacier, MT 48.50 114.01 1,128
13010065 Snake River Ab Jackson Lake at Flagg Ranch, WY 44.10 110.67 486
13105000 Salmon Falls Creek near San Jacinto, NV 41.94 114.69 1,450
13147900 Little Wood River Ab High Five Creek near Carey, ID 43.49 114.06 248

 

igure 1. PRMS soil moisture simulation, Santa Clara River. Gray background indicates the model simulated 
limatology from 1984-2003, including the historical minimum, maximum, median and 10 and 90% exceedence 
robabilities. Heavy black dotted line shows simulated 2005 values and solid and dashed lines are the forecast 10, 
0 and 90% exceedence probabilities issued June 29 2005.  



Figure 2. PRMS streamflow simulation, Santa Clara River. Gray background indicates the observed climatology 
from 1984-2003, including the historical minimum, maximum, median and 10 and 90% exceedence probabilities. 
Solid black line shows simulated 2005 values and the dashed line with triangles represents the observed. Data after 
June 29 represents the streamflow forecast exceedence levels, as figure 1; note underdispersion of forecast 
ensemble spread (i.e. the forecast 10, 50 and 90% exceedence probabilities are overlapping) 

 
 
Figure 3. PRMS streamflow simulation, Little Wood River. See figure 2 for symbology. Historical and conditional 
years include 1987-2003. Similarly note underdispersion of forecast future flows.   

 


